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Abstract 

This paper studies some classical three-dimensional field theories fbr which the ranges of 
the field variables are a 3-sphere, a 2-sphere, the symplectic group, Sp(n), the special 
orthogonal group, SO(3), and the $4,1 space of general relativistic metrics. The main 
result is the proof that these theories admit half-odd-integer spin, so that the 1-kink states 
are classical analogs of fermion states. 

1. Introduction 

For the purposes of  this paper,  a three-dimensional classical field theory is 
specified by giving the manifold Y into which R ~ is mapped by the fietd vari- 
ables. Thus any such theory involves mappings ~0, 

~o:R3~  Y 

Furthermore,  we shall only consider mappings ~o and homotopies  ~o t o f  ~o for 
which 

~0(x) -+ Y0,  ~ot(x) -+ Yo as  I xl -+ oo 

where x E R a and Yo is some fixed base point  of  IT. Such mappings are o f  
course equivalent to base-point-preserving mappings o f  S 3 the one-point com- 
pactif ication of  R 3, into Y. By referring to a " Y t h e o r y "  we shall mean a field 
theory of  the above type. The most  interesting situations arise for Y theories 
for which Y is topologically nontrivial,  and, in particular,  in which the third 
homotopy  group o f  Y is not  isomorphic to the trivial group of  one element. 
We follow the terminology of  Finkelstein (1966) in making the following 
definition. 

Definition. A Y theory  for which rr3(Y) =~ 0 is said to "admit  kinks."  
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Theories that admit kinks were first studied by Enz (1963), Finkelstein and 
Misner (1959), and Skryme (1958). Given that a Ytheory admits kinks, the 
space of all mappings 9 is the disjoint union of a set of equivalence classes such 
that two mappings belong to the same equivalence class if and only if they are 
homotopic. These equivalence classes are the group elements of zrs(Y ). One or 
more of  the equivalence classes will be generators for rrs(IT). Mappings belong- 
ing to such equivalence classes are called 1-Nnk mappings. Similarly, mappings 
belonging to an equivalence class resulting from applying a generator n times 
to the identity element of rr3(Y) are called n-kink mappings. 

For three-dimensional theories, it is sensible to talk about spin. One of the 
most interesting possibilities arising with three-dimensional theories that admit 
kinks is that the 1-kink mappings in the classical theory might correspond to 
half-odd-integer spin states when the theory is quantized. If this is so, then a 
kink can be regarded as a classical analog of a fermion. This idea is made more 
precise in the following definition (Finkelstein and Rubinstein, 19 68). 

Definition. If QI denotes an equivalence class(es) of t -kink mappings 
for a Ytheory, then the Ytheory is said to "admit half-odd-integer 
spin" provided that the following conditions are satisfied: 
(i) lh(Q1 ) has an element of order 2. 

(ii) The 27r rotation paths in Q1 are nontrivial. 

Condition (i) is redundant, since it is implied by condition (ii). However, condi- 
tion (i) can be used as a preliminary test for the possibility of admission of 
half-odd-integer spin since it is usually easy to check, as can be seen from the 
following argument. 

Let Q0 denote the identity element of rra(Y). G. W. Whitehead (1946) has 
established the following isomorphism: 

zq(Q1) ~ rq(Qo) 

It is also well known (Hilton and Wylie, 1967, proposition II.2.5) that 

rq(Qo ) ~ 7r4(Y ) 

Hence condition (i) is readily checked by evaluating the fourth homotopy 
group of Y. 

The purpose of this paper is to study the special cases for which Y is any of 
S 3, S 2, Sp(n), SO(3), or $4, ~. $4,1 denotes the set of 4 x 4 real symmetric 
matrices that are similar to diag (1 ,1 ,1 ,  -1) ,  and is relevant to the space of 
metrics in general relativity. For each of these cases, 

~rs(r) ~ z  

where Z denotes the group of integers. Thus each of these theories admits 
kinks. Also, for each of the above cases, 

~r4(Y) "~Z2 

where Z2 is the group of integers modulo 2. Hence it is reasonable to investi- 
gate the possibility of half-odd-integer spin. The main result of this paper is the 
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proof that each of these theories admits half-odd-integer spin. This result has 
already been obtained for S 3 and $4,1 (Williams, 1970, 1971), but the method 
of proof presented in this paper is new and more systematic than previous 
approaches. 

2. The S a Theory 

The 3-sphere can be parametrized by four real variables (~1, ~2, ~b3, 4~4) 
subject to the restriction 

qh 2 + ~  +~a 2 +~42 = 1 

Let (0, 0, 0, 1) be the fixed point o r s  a. Hence the theory involves mappings ~o, 

tp:R3 ~ S  3 

with 

~(x )  -+ (0,  0, 0,  1) as L xl  -+ 

The "kink number" is simply the degree of the mapping. An example of a 
1-kink mapping is given by the following mapping s: 

s :R 3 -+S 3 

with 

s(X) = (01, ~2, ~3, ~4) 
and 

~i = 2axi/( r2 +a2), i = 1,2, 3 

q~4 = ( r2 - a2)/( r2 +a2) 

where r = tlxll and a is a constant parameter. This mapping is the familiar stereo- 
graphic projection. For kink field theories, it is usual to consider the center of 
the kink to be at the point(s) of R a that maps into that point of Y that has 
the largest metric distance from the fixed point. For the above example, x = 0 
is the point that is mapped into (0, 0, 0, -1) ,  and hence the kink is centered 
at the origin of R 3. An example of a theory of the above type has been discussed 
at length by Skyrme (1958, 1961,1962, 1971). 

3. The S 2 Theory 

The 2-sphere can be parametfized by three real variables (~1, ~2, ~3) with 

~ / + ~ 2 + ~ = 1  

To understand the nature of the kinks of the S 2 theory, it is convenient to 
consider the topologically equivalent problem of mapping S 3 into S 2. The 
invariant characterizing the mappings is called the Hopf invariant. Define h, 
the Hopf mapping (Hilton, 1966), as follows: 

h :S 3 -~S 2 
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with 

where 
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h(41, 42, 43, 44) = (¢1, ¢2, ~3) 

¢I = 2(4341 - 4442) 

¢2 = 2(4342 + 4441) 

¢3 = 1 - 2(412 + 4 ] )  

An example of a t-kink mapping for the S 2 theory is then provided by hs, the 
composition of  the stereographic projection with the Hopf mapping. One of the 
most interesting features of the S~theory is that the high-energy density region 

3 of the kink has the form of  a loop in R . This loop is the set {x Ix ~ (0, 0, -1)}, 
and for the mapping hs it is simply the circle xl 2 + x22 = a 2, x3 = 0. Enz (1977) 
has recently studied extended particles for a field theory whose range is the 
2-sphere. He has studied the topology in some detail, although his boundary 
conditions are different from ours, leading to a situation in which the mappings 
are characterized by more than one type of invariant. 

4. The Sp(n) and SO(3) Theories 

The symplectic group Sp(n) is defined as the group of linear transforma- 
tions in quaternionic n-dimensional space H n that preserve the inner product. 
Since H n is equivalent to complex 2n-dimensional space, Sp(n) can also be 
defined as the group of 2n x 2n complex unitary matrices U such that 

\ - l n  

where 1 n denotes the n x n unit matrix. We shall follow the terminology of 
Steenrod (1951) and Husemoller (1974) [although some authors (see, for 
example, Weyl, 1939) refer to the above group as the unitary symplectic group, 
and denote it by USp(2n)]. 

Sp(1) is homeomorphic to S 3. For n > 1, Sp(n) contains Sp(n - 1) as a 
subgroup, and so by induction contains Sp(1) as a subgroup. It follows (Steen- 
rod, 1951, p. 132) that any degree-1 mapping from R°on to  the Sp(1) subspace 
of Sp(n) is an example of  a 1-kink mapping for the Sp(n) theory. 

For SOt3), the special orthogonal group in three-dimensions, the double 
covering S ~ SO(3) provides an example of a 1-kink mapping. 

5. Basic Facts about the J Homomorphism 

The homomorphism J :  7ri(SO(n)) -~ ~rn+i(S n) was introduced by G. W. 
Whitehead (t  942) and has been of great importance in homotopy theory. 
We give a brief description of this homomorphism and its relevant properties. 
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For any ~ = (q51,... ,  ~i+n+~) Es i+n ,  write ~ = ( x , y ) ,  where x = (~1, • •. ,  
q~i+l),Y = (~bi+2 . . . . .  ~bi+n+ 1), and also Itx II = cos ½rrt, IIY I1 = sin½rrt, 0 ~< t ~< 1 
(which determines t uniquely). Regard S n as the suspension ES n -  1, so that 
points of  S n are o f  the form [z, t],  z E S n -  a, 0 <~ t <<. t ,  with [z, 0] = [z', 0] 
and [z, 1 ] = [z',.1] Vz, z'  @ S n -  1. 

Now let f :  S ~ -+ SO(n),  and define 

by 

There is a welt-defined map 

given by 

7 .  Si x S n -  I .+ S n - 1  

~ ( u , v ) = f ( u ) ( v )  

g .  S i+n __~ S n 

g(~) = [~(x/l lx II,Y/IIY II), t] 

It is fairly clear that the homotopy  class o f g  depends only on the homotopy  
class o f f ,  and one sets [g] = J [ f ] .  

Proofs that  J is in fact a homomorphism as well as other basic facts about J 
can be found in Whitehead's paper (1942) or in Husemoller 's book  (1974). 
Whitehead proves that J gives an isomorphism on the 1-stem, i.e., 

J: ~l(SO(n)) ' ~ . + l ( S " )  

Note that the group in question here equals Z i fn  = 2, and Z 2 for n > 3. We 
shall also make use of  the following commutative diagram (Whitehead, 1942): 

J 
~i(SO(n)) , ~.+l(s") 

+#n* J ~E 

~i(SO(n + 1))---~Trn+i+l(S "+1) 

where ~n : SO(n) c-+SO(n + 1) and E is the Freudenthal suspension homo-  
morphism (Steenrod, 1951). 

6. 2~ Rotat ion Paths 

For n > 1, let SO : S n -+ Y represent a generator of  Zrn(Y); i.e., so is a t-kink 
map. The base point o f S  n is s o = (0, 0 . . . . .  1), that  o f  Yis denoted b y y o ,  and, 
following Section 1, we write Q1 for the space of  all base-point-preserving 
maps that are homotopic  to SO. 
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Definition. A 27r rotation path in Y (of dimension n) is the loop 
co : Sa "+ Q1 given by 

co( t ) (¢l , . . . ,  ~n+l)  = ~o((~1 . . . . .  (Dn+ 1) '  Rt) 
O<~t~< 1,where 

= \ (  cos 2nt sin 2~rt i )  

Rt I - s in  27rt cos 27rt 
0 

Notice co(t)(So) = ~O(So" Rt) = ~O(So) =Yo Vt, and also 6o(0) = co(l) = 

Let q : S 1 ~-~ SO(2) be the map identifying S 1 with SO(2). As remarked 
in Section 1,7ra(Q1) ~ 1rl(Qo) ~ ~rn+l(Y), and we are interested, in the case 
n = 3, in establishing the nontriviality of [co] ~ 7rl(Q1). First consider the case 
Y = S 3. Then we take ~o to be the identity map S 3 ~ S 3, and note co = 
ep3p~q : S 1 -+ Qa, where q, g2, P3 are as above and e : SO(4) ~ ~ Q I  is the 
inclusion. 

Proposition. [~] corresponds to the nonzero etement of n4($3). 

Proof From the result of Whitehead's quoted in Section 5 above it follows 
that J[P3g2 q] 4= 0 in ns(S 4) ~ Z2. The result to be proved then follows 
immediately on applying the following factofization of J to [PaP2q]- 
(Husemoller, 19 74, p. 212): 

zq(SO(4)) e ,  7rl(Ql ) ~ ~r4(Sa ) ~ zrs(S 4) 

since [co] = e, [u3u~l]. 

Corollary 1. The S 3 theory admits half-odd-integer spin. 

Corollary 2. The S 2 theory admits half-odd-integer spin. 

Proof of  Corollary 2. Simply consider the diagram 

hi(SO(4) ) e ,  n l ( Q 1 ) ~  n4($3) ~ 7r4(Sz) 

Since [co] @ ~1(Q1) is nonzero and h, ,  0 are isomorphisms, the relevant class 
h, 0 [a~] is nonzero here. 

Corollary 3. The Sp(n)-theory admits h~Af.odd-integer spin, n/> 1. 

Proof o f  Corollary 3. This is proved in the saz'~e manner as Corollary 2, by 
composing 0e, with the isomorphisms (Steenrod, 1951, p. 132): 

7r4(S 3) ~, 7r4(Sp(1)) ~ ,  7r4(Sp(2)) ~ ~ . . .  ~ ,  ~r4(Sp(n) ) 
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Corollary 4. The SO(3) theory admits half-odd-integer spin. 

Proof o f  Corollary 4. Again this follows since the double covering 
c : S a -+ SO(3) induces an isomorphism c. : rr4(S 3) "~  Ir4(SO(3)). This result 
is also given by Finkelstein (1966). 

The SO(3) theory is closely related to the particular general relativistic case 
in which the metric defines a base-point-preserving mapping f rom S a to $4,1- 
(In specifying the space-time manifold to be S a, we are of  course being very 
restrictive.) The existence of  a fibration $4,1 "+ SO(3) with contractible fiber 
(Steenrod, 1951, Chap. 40) shows that the $4,1 theory is homotopical ly equi- 
valent to the SO(3) theory. Thus the $4,1 theory admits kinks and half-odd- 
integer spin. 

7. Summary and Conclusions 

This paper has studied a number of  nonlinear field theories. We have 
investigated the topological structure o f  these theories, without assuming any 
particular forms of  Lagrangian, and have shown that the theories admit half- 
odd-integer spin. Thus the 1-kink states should correspond to fermion states 
in the corresponding quantized theories. 

References 

Enz, U. (1963). Physical Review, 131, 1392. 
Enz, U. (1977). Journal of Mathematical Physics, 18, 347. 
Finkelstein, D. (1966). Journal of Mathematical Physics, 7, 1218. 
Finkelstein, D., and Misner, C. W. (t 959). Annals of Physics, 6, 230. 
Finkelstein, D., and Rubinstein, J. (1968). Journal of Mathematical Physics, 9, 1762. 
Hilton, P. J. (1966). An IntPoduction to Homotopy Theory, Chaps. V and VI. Cambridge 

University Press, London. 
Hilton, P. J., and Wylie, S. (1967). Homology Theory. Cambridge University Press, London. 
Husemoller, D. (1974). Fibre Bundles. Springer-Verlag, Berlin. 
Skyrme, T. tt. R. (1958). Proceedings of the Royal Society of London, A247, 260. 
Skyrme, T. H. R. (1961). Proceedings of the Royal Society of London, A260, 127. 
Skyrme, T. H. R. (1962). Nuclear Physics, 31,556. 
Skyrme, T. H. R. (1971).Journal of Mathematical Physics, 12, 1735. 
Steenrod, N. (1951). Topology of Fibre Bundles. Princeton University Press, Princeton, 

New Jersey. 
Weyl, H. (1939). The Classical Groups. Princeton University Press, Princeton, New Jersey. 
Whitehead, G. W. (1942). AnnaIsofMathematies, 43, 634. 
Whitehead, G. W. (I 946). Annals of Mathematics, 47,460. 
Williams, J. G. (1970). Journal of Mathematical Physics, 11, 2611. 
Williams, J. G. (1971). Journal of Mathematical Physics, 12, 308. 


